
Silenus

Dissertation Proposal Document

Maximilian Berger





iii

TABLE OF CONTENTS

I. Introduction............................................................................................................. 1

Short Overview................................................................................................... 3

Dissertation Outline............................................................................................ 4

II. Background and Literature Review.......................................................................6

Existing network file storage solutions.............................................................. 6

Non replicated remote file systems............................................................ 6

Replicated file systems............................................................................... 8

Data grid solutions......................................................................................9

File system core features............................................................................ 10

Architectural qualities for distributed systems................................................... 11

Transparencies.............................................................................................11

Confidentiality.............................................................................................12

Global availability.......................................................................................15

Disconnected Operation..............................................................................18

Manageability..............................................................................................19

Scalability....................................................................................................20

Reliability....................................................................................................20

Modifiability............................................................................................... 21

Platform independence................................................................................21

Service Orientation............................................................................................. 22

Eight fallacies of distributed computing.................................................... 22

Service Oriented Architecture.................................................................... 23

Jini Network Technology........................................................................... 26

Peer-to-peer networking..............................................................................27

SORCER..................................................................................................... 28

Eight truth of networked computing.......................................................... 29

III. Requirement Analysis...........................................................................................30

Scenarios............................................................................................................. 30

Small work group....................................................................................... 30

High Performance Computing Lab............................................................ 31



iv

Large network............................................................................................. 31

Home user................................................................................................... 32

Concurrent Engineers..................................................................................32

Student Computer Lab................................................................................32

Astronomy...................................................................................................32

High energy physics................................................................................... 33

Machine types on the network........................................................................... 33

Server.......................................................................................................... 33

Always up client......................................................................................... 33

Work time up client....................................................................................33

Laptop..........................................................................................................34

Mobile client............................................................................................... 34

Usage roles..........................................................................................................34

File system users.........................................................................................35

Administrators.............................................................................................35

Optimizer services...................................................................................... 36

Service provisioners....................................................................................36

Intergrid service providers..........................................................................37

IV. Design...................................................................................................................38

System architecture.............................................................................................39

Service user interface......................................................................................... 41

WebDAV adapter............................................................................................... 41

File store............................................................................................................. 43

Metadata store.....................................................................................................45

Byte store............................................................................................................ 46

Optimizer.............................................................................................................46

V. Validation...............................................................................................................48

VI. Conclusion............................................................................................................ 49

Bibliography................................................................................................................50



v

LIST OF FIGURES

I.1. 4-Blocker.............................................................................................................. 4

II.1. Service-Oriented Architecture............................................................................ 24

II.2. Service oriented Tasks and Jobs.........................................................................25

III.1. Small work group..............................................................................................31

III.2. Typical user cases for a file storage system......................................................35

III.3. Administrator use cases for a replicated file system.........................................35

III.4. Optimizer use cases for a replicated file system...............................................36

III.5. Provisioner user cases for a replicated file system........................................... 36

III.6. Use cases for the intergrid meta computer........................................................37

IV.1. Components in the SORCER network..............................................................38

IV.2. SILENUS components...................................................................................... 39

IV.3. Component diagram for the user interface....................................................... 41

IV.4. Component diagram for the WebDAV adapter................................................ 41

IV.5. The WebDAV adapter...................................................................................... 42

IV.6. Component diagram for the SILENUS facade................................................. 43

IV.7. File upload transactional semantics.................................................................. 44

IV.8. Component diagram for the metadata store......................................................45

IV.9. Component diagram for the byte store............................................................. 46

IV.10. Component diagram for the optimizer............................................................46



vi

LIST OF TABLES

II.1. File system core features on remote file storage solutions.................................11



1

CHAPTER I. INTRODUCTION

Storing of data has always been an issue in computer science. Sure, saving your

data to a hard drive is easy and convenient, but there are several things that could happen.

The first problem is that of data theft. Nowadays this has become one of the most

important issues, but unfortunately it is still overlooked by many developers. On most

PCs a person sitting at the machine can read any data. Now you might say, that it is very

unlikely for someone from your competition to walk into your office and turn on your

computer, but think about how many people actually have the key to your office? You

co-worker, who may not like you, a housekeeper, who is underpaid, and so on. Even if

your data is stored on a server, any administrator can usually read all data.

The second, and most noticeable problem is that of computer failure. Computer

are not, and will never be failsafe. As a matter of fact, at any given time only 80% of

all machines on the network are working. Imagine having an important report on the

server and not being able to work on it, because the server is down. There are different

possibilities for failure: Planned maintenance, unplanned outages, network failure or

server failure. Most of the times these failures are temporary, which is just annoying, but

sometimes these failures are permanent. In this case you can only hope that you have a

recent backup.

These are just two of the problems with todays file storage system. Both can

be solved using much energy and thought. A server could be put in a secure room with

an alarm system where only one person has access. There could be multiple network

connections, multiple servers, with fail over, a daily backup system, and so on. But

solving these issues is very time consuming and requires a lot of maintenance. Smaller

companies or even home users will not do all that to protect their data.

So there must be an easier way to manage data files. A way, that enables the

average user to take advantage of todays networked world, without buying expensive

hardware or hiring an expert. This, however, calls for a new paradigm in networked

computing.



2

Paradigms of computer networking changed over time. When the first multi-user

computers where introduced, they used the server-client paradigm. One large server

would handle all the time-consuming tasks, and multiple, so called "dumb terminals"

did nothing but interaction with the user. Would the server fail, no users could work.

The next big trend in the computer industry was the Personal Computer. Instead of being

dependent on other machines, no each user had his own machine. Would a machine fail,

this persons data could be lost, but no one else would be affected. Handling many of

theses systems was a difficult tasks for administrators. They had to physically sit at the

machine and disturb the user for each maintenance task. So people began networking

their personal computers. They went back to the client-server paradigm for some things,

such as storage space, and used their personal computers for other things, mostly

computation. This is the current state in most computer networks around the world.

Another networking paradigm has emerged quite recently. It is called

peer-to-peer. In a peer-to-peer architecture each client is also a server and each server

is a client. Some people call these "servent". The main idea is, that instead of just

consuming resources, like a client, or offering services, like a server, a machine will do

both. Peer-to-peer software is mostly used in file-sharing networks, such as bit-torrent.

Instead of downloading a file from a single location, a user can now download a file from

every other user which already has this file. This saves bandwidth and can vastly improve

performance. Unfortunately peer-to-peer networks have a bad reputation, since most of

the content found in these networks should not be shared in the first place. However,

peer-to-peer networks are very recent technology and the area of current research.

The fourth, and most advanced network paradigm is the one of service oriented

computing. Peer-to-peer is already an advanced step, but why stop there? In service

oriented computing, a service exists on the network. It could provide computational

power, storage space, or other things. But most important: Its location does not only

matter, it may even change, if a machine becomes unavailable. The software for a service

doesn't need to be installed on a computer. Any computer joining the network can

automatically pick up services, and provide them to all other computers. This provides

a very dynamic and fail proof network. SORCER, developed by Dr. Sobolewski at the



3

Texas Tech University, provides a framework to support service oriented computing.

There have been several projects researching the distribution of computational power, but

so far none concerning the distribution of storage space.

And this is how this all comes together. SILENUS is a distributed file storage

system that is secure, failsafe and easy to use. It uses a different approach: File Storage is

a Service, and the user should not need to know where, when, or on which machines the

actual files are stored. Files are automatically replicated and migrated. Data is encrypted

and available to only authenticated users.

Short Overview

To give a quick overview over this dissertation, it can be boiled down to a

4-Blocker. Figure I.1, “4-Blocker” gives a one-page summarization of the elements

involved.



4

Figure I.1. 4-Blocker

Dissertation Outline

This dissertation is written in six chapters. Chapter I (this chapter) introduces the

problem of storing data. It then gives an overview over this dissertation.

Chapter II describes the background research and literature review necessary

to understand the problems and proposed solutions in this dissertation. It is written in

two parts. The first part describes existing file storage solutions, their advances and

disadvantages, and how they relate to SILENUS. The second part looks into different

qualities for distributed systems.

Chapter III describes the detailed objective of the SILENUS solution. The

exact requirements are extracted from the knowledge about existing solutions and their

shortcomings.



5

Chapter IV proposes a solution based on the technology investigated in the

background research. It gives a possible solution based on a service oriented architecture.

It then describes the individual components.

Chapter V will describe a prototype based on the solution proposed in Chapter

IV. It will look at a specific implementation of the proposed solution. It will describe

details and algorithms that were necessary to solve problems that will appear during

the implementation. It describes which test cases where used to validate the proposed

solution.

Chapter VI will summarize the dissertation. It will provide an overview over the

things learned. It will compare the new solution with the existing ones. At the end it will

describe further work and research directions.



6

CHAPTER II. BACKGROUND AND LITERATURE REVIEW

The literature review and background includes two parts: In the fist part existing

distributed file storage systems are looked at and analyzed. Their content will provide

a solid base for the current state of the art. In the second part different techniques and

approaches are investigated. This is needed to make a good decision on which approaches

to choose for the actual design.

Existing network file storage solutions

Before developing a new solution, one has to look at existing solutions. For once,

they might provide very good hints on what is done and what is still missing, but for

many people these existing solutions might already provide all the features needed.

This chapter will look at different existing network file storage solutions. Single

computer solutions are skipped, as this dissertation is about distributed data storage.

Different solutions will be looked at in the order of their complexity and the amount of

functionality they provide.

When looking at these file systems three types of file systems have to be

distinguished. The first type provides remote access to files, but these files exists in one

place only. NFS and CIFS are examples of such file systems. The second type provides

file replicas, providing better access and higher availability. AFS and Coda are examples

of replicated file systems. The third type of solutions are data grid solutions. These

provide full data management, mostly for high-performance computing applications.

Globus GridFTP and the Avaki data grid are example solutions.

Non replicated remote file systems

Non replicated remote file systems are network file systems where the actual data

exists in only one place on only one machine. This usually means much less overhead,

and simplicity. However it also means less safety in the case of failures. If the machine

that contains the file is unavailable then the file will not be available.



7

Network File System (NFS)

NFS is the most widely used network file system in Unix environment. It was

originally developed by Sun but is now available on almost any Unix or Unix-like

operating system. It is implemented as a set of remote procedure calls (RPC). It provides

only host-based authentication and only suggests to obey use permissions. File-locking

was not possible until version 3 and still provides problematic between different

operating systems. Newer implementations of NFS provide a little more security, but

these are less used do to incompatibilities with other operating systems. NFS is absolutely

not reliable in the case of network failures: The administrator can chose between "fail"

after a certain timeout or "hang forever". Despite all these shortcomings NFS is a very

fast network file system with very little overhead. It works very efficient in local area

networks (LAN). NFS mounts can be read-only cached for improved performance.

Migration of data is impossible: Data is referenced by the server name and the location

on the server. [1, 2]

Migration and replication of data has been added to version 4 of the

NFS protocol. Unfortunately this specification is still fairly new, and so current

implementations are limited. Many existing clients are now just having a fully working

NFS v. 3 implementation. Even in NFS 4 a server must still be available to tell clients

about the new location of their data. [5]

Common Internet File System (CIFS)

CIFS was first developed by IBM under the name Server Message Block (SMB)

protocol. If was then re-used by Microsoft as their network file system protocol and then

later renamed to Common Internet File System (CIFS). It this system a user connects to

a specific storage on a specific server. Then she can use the remote disk space like any

local disk space. Locking and authorization are provided. The biggest drawback of CIFS

is that it provides user-based authentication only. An administrator can not mount a file

system for all users and give them different permission. Despite other claims CIFS is

very secure: Since every user has to authenticate herself there is no need to trust the client

computer. User administration is needed on the server only. CIFS is the most commonly



8

used file system protocol in the windows world. It even provides browsing for available

shares. CIFS file systems can be easily migrated to different locations on the same server

machine but not across multiple machines. [14, 13]

Despite of these drawbacks, single replica file systems are still the most common

used. The main reason for that is their sheer simplicity. Any new remote file storage will

have to compete with that. Even though more sophisticated solutions are available, most

Unix-like systems still use NFS and most Windows-systems use CIFS.

Replicated file systems

Replicated file systems keep their data on more than one server. There will always

be multiple copies of each file. The advantage is that now only one of the machines has

to be available. This helps to provide availability in the case of hardware and network

failures. Multi-replica file systems are more sparsely used. They require a substantial

amount of administration.

Andrew File System (AFS)

The Andrew File System was originally developed at the Carnegie Melon

University (CMU). It was then continued by IBM, and eventually made open source.

AFS was intended as a replacement for NFS on Unix machines. However, the AFS

software is available for all common operating systems. AFS has a wide variety of

features: The user does not need to know where the physical file is, only the address

of an AFS master server. The master server and all data can be replicated. Replicas

are usually read-only, but can be made the upgraded to the master copy in case of a

permanent failure. The client software usually creates caches the data locally, giving

better performance. AFS security is handled via Kerberos, which is a common standard

for authentication. AFS data, however is not encrypted. The number of replicas of a file

depends on what store the file is in.[38]

AFS is a very good distributed file system. Many larger organizations such as

large companies and Universities use it. One major drawback used to be high license

fees, which has disappeared since the software was made available as open source.



9

The biggest problem with AFS is the time it takes to set up. Configuration is very

complicated. It is easier if a Kerberos server is already in place, but it will still take a long

time. This makes AFS unusable for the small work group or the home user.

Coda

Coda is also developed at the CMU. It is based on the code of AFS. Code

provides many more interesting features, such as read-write replicas and hoarding. Coda

even has conflict resolution: Should the network connection between two servers fail

while two clients are writing on them it will automatically detect conflicts and provide

both files. Coda also requires OS support, which is only available for a limited number

of operating systems. Coda is still in an experimental stage, and not recommended for

production use. Code provides some kind of security, unfortunately some of it has been

cut out due to the encryption export restrictions of the USA.

Coda provides very interesting features: Especially the disconnected operation

and automatic conflict resolution in code is very sophisticated. Unfortunately the setup of

Coda still requires a lot of manual administration.[15, 16]

Data grid solutions

Data grid solutions try to provide common data for computation intensive,

distributed applications. They usually require specially written applications to function

properly.

Globus file store

The file storage system in Globus was invented from a different viewpoint. While

the others tried to supply a file system to all legacy applications, the Globus system tries

to supply efficient file storage to new applications, which are specifically written for

the Globus system. The Globus system is used to for distributed computing. Since this

usually involves a lot of data, the main focus here was on performance. Files can be

downloaded from multiple sources to prevent server overload.

The Globus file storage system has very good ideas. The main drawback is its

incompatibility with legacy applications and that it never was meant to be a file system

for legacy applications. [17, 18, 19, 39]



10

Avaki

Sybase Avaki Enterprise Information Integration (EII) provides a comprehensive

grid data management solution. It stores data at different locations but provides one

common interface to the user application. It combines data from different sources on

different machines and different locations in an unified view.

Avaki does not use redundant data copies and replicas. It deliverers data from

its original source. It is rather optimizer for already existing fast and reliable network

infrastructure in high performance computing labs.

Avaki originally started out at the University of Virginia under the name Legion.

It was commercialized in 2000. In 2005 Avaki was bought by Sybase and integrated into

their line of data oriented services.

The original Legion software was seen as a grid portal rather than a data

management solution. It provides unification of different data sources and access through

the same interface. It is the common interface that makes Avaki interesting.

A major drawback of the Avaki software is its cost. Being a commercial software

the initial costs are very high. The software requires an existing, reliable infrastructure.

As such it may be good for larger organizations but is totally unfit for the end user.

The Avaki software is unable to handle disconnected operations. Accessing data

from its original source means that the original source must be available: the network

must be working, the machine must be up and the software must be running. All these

assumptions can only be made in a very controlled environment that hardly exists outside

of lab conditions. [20, 21, 22, 23, 24, 40]

File system core features

A set of distributed file system core features can be defined based on the analysis

of the existing file storage solutions. Table II.1, “File system core features on remote file

storage solutions” shows these features and gives an overview of the existing remote file

storage solutions:



11

Feature NFS CIFS AFS Coda Globus Avaki

Remote access Yes Yes Yes Yes Yes Yes

Migratable on the

same machine

#v.4 Yes Yes Yes Yes Yes

Migratable onto

another machine

#v.4 No Yes Yes Yes Yes

Replicated No No R / O R / W R / O R / O

Self optimizing No No No No Yes Yes

Easy install Yes Yes No No No No

Compatible with

existing software

Yes Yes Yes Yes No No

Table II.1. File system core features on remote file storage solutions

All of these core features will be implemented in the SILENUS file storage

system.

Architectural qualities for distributed systems

When designing a distributed system, several architectural qualities have to

be satisfied. First, these qualities have to be identified. Existing solutions have to be

investigated. Then possible solutions will have to be proposed.

Transparencies

A good distributed system should provide network transparencies. These

transparencies are defined by ISO, however most applications do a poor job of providing

all of them. To make SILENUS easy do use, all of these transparencies should be

provided: [12] [56]
• Location transparent: it shouldn't matter where the file is stored
• Access transparent: all elements in the file store should be accessible from classical,

non-SORCER programs.
• Replication transparent: there should be no difference on what replication the user

works
• Failure transparent: the system should still work even if a significant number of hosts

is down.



12

• Read concurrency transparent: multiple users should be able to read the same file at the
same time

• Write concurrency transparent: multiple users should be able to write to same file at
the same time

• Migration transparent: the system or the user should be able to migrate the physical
presence of a file without interrupting any work.

Confidentiality

One of the most important features of any distributed file storage solution is

confidentiality. Confidentiality here means that only authorized people are allowed

to view the files stored in the system. In a distributed system this becomes even more

important since files are stored on multiple systems. Even an administrator on one system

should not necessarily be allowed to view all files stored on a particular device.

The term confidentiality is used in contrast to the usual term privacy. Privacy can

have other meanings, where confidentiality is clearer in describing that only authorized

people are able to view certain content.

Most of the existing file storage solutions check users credentials. Once a user is

authenticated, she has full access to all her data. Unfortunately these credentials can be

very often bypassed by administrators. Most systems allow administrators to impersonate

any user on their system. While this is a good solution for single systems, where an

administrator should have full rights, this can be a problem in a distributed system. Users

may very often have administration rights on their personal work computer, but they

should not be able to read data from other users on the same network.

Even if the user does not have administrative access, network ports are very often

unsecured. In many cases, organizations provide network ports for guests, or students in

the case of universities. These public ports can very often be used to listen into traffic on

the network. A solution may be not to provide any public ports, but some of them might

be outside of the organization: A user might want to access her data over the Internet, and

there is no telling who could be listening.

Another security hole is direct access to the storage hardware. Even with no

administrative rights, users can very often boot systems from an alternative medium

and acquire administrative access. This can be prevented, however, there is currently no

defense against someone physically taking a hard drive out of a computer. Making the

hardware inaccessible is easily possible in large organizations. All that has to be done is



13

put the servers in a dedicated server room with security cameras and give out a limited

numbers of keys to trusted personnel. All the data will be stored in the server room, no

data will be stored on the users machines. Unfortunately this solution is impossible for

smaller organizations. It also makes redundancy almost impossible to acquire.

Encryption solves the problem of confidentiality: Instead of storing data in

so called plain format, the data is encrypted and then stored. To decrypt the data, a

decryption key is needed. These keys are much smaller than the actual data. Current key

sizes range from about 128 - 4096 bit. Storing a 4096 bit key takes up only 0.5 kilobytes

of space and can safely encrypt several gigabytes of data. Sophisticated methods to

secure encryption keys have been developed. Most common are pin-numbers, pass

phrases and smart cards. [57]

There are two main types of encryption: symmetric and asymmetric encryption.

Both have their advantages and disadvantages.

Symmetric encryption

In symmetric encryption the encryption and decryption key are the same. The

main disadvantage is that no data can be encrypted without the decryption key present.

So no one can leave data in the system for other people to read unless that person has

access to the same key. Symmetric encryption therefore requires a lot of trust between

involved parties. The main advantage of symmetric encryption is its speed. Symmetric

encryption with short key length can be done very fast. The most widely used symmetric

encryption algorithms are DES, blowfish and AES. DES and AES where standardized by

the U.S. government for use in commercial applications. [7, 8]

Asymmetric encryption

In asymmetric encryption the encryption and decryption keys complement each

other. Data can be encrypted with one key, and decrypted with the other. The main

advantage here is that the encryption key can be made public: It is almost impossible to

calculate the decryption key from the encryption key. This is by far more secure than

symmetric encryption: The encryption key can be made public knowledge. Unfortunately

asymmetric encryption is by far slower than symmetric encryption and requires longer

key length. The most widely used asymmetric algorithm is RSA. [25]



14

Encrypting decryption keys

Both symmetric and asymmetric encryption can be combined: In current

applications, each individual datafile is encrypted using symmetric encryption with

a random encryption key. This encryption key is then encrypted using asymmetric

encryption with the users asymmetric key. The encrypted symmetric key is then attached

to the data file. This method combines the speed of symmetric encryption with the

security of asymmetric encryption. It also allows files to be available to a group: The

symmetric data key is simple encrypted with multiple asymmetric keys.

This combination has the advantage that a different symmetric key can be

generated for every stored item. The encryption keys don't repeat, so a smaller size key

can be used. If the encryption on a file is broken, one that one file will be compromised.

Smaller keys allow for greater speed and flexibility.

The second advantage is that the secret asymmetric key can be physically

carried by a user. It could be saved on a disk, USB key, smart card, or some other small

device. This allows for the data to be encrypted on the users computer. It will not be

sent unencrypted through a public network. It will never be decrypted on the computer

responsible for the actual storage. Thus, administrators and eavesdroppers will not be

able to view any data they aren't supposed to.

Existing cryptographic libraries

Instead of relying on a certain implementation, it is important to rely on a

cryptographic library that has exchangeable algorithms. Cryptographic algorithms come

and go. What is considered safe today may be considered flawed in the near future.

To not have to worry about this the algorithms themselves should be exchangeable.

Cryptographic libraries provide support for multiple algorithms. The most common used

library for the language C is gcrypt. There are several libraries for Java. Fortunately Sun

has developed a standard for Java cryptographic extensions (JCE). All cryptographic

libraries based on JCE are exchangeable. [41, 9]



15

Global availability

In todays world, uses switch computers very frequently. A user may have a work

computer and a home computer. However, the data should also be available at colleagues

work computer, a friends computer, or at a computer in an Internet café half-way around

the world. But not only full computer systems, but also smaller devices such as cell

phones and PDAs are now connecting to the Internet. A users data should not only

be restricted to the use of desktop computers, but should be available on any device

anywhere.

In most cases, the users will not have the necessary administrative rights to install

file system drivers. In some cases, like the home and work machine, this is no problem.

But installing software in an Internet café is usually not possible. Therefore any file

storage solution must be able to work with existing operating systems and applications.

Providing support to existing application is an important feature in remote file

storage solutions. After all, it is very unpractical to store data and not being able to use it

with existing software. Any new file storage solution should provide support for existing

application by offering a support for as many operating systems as possible.

WebDAV

The Web Distributed Authoring and Versioning specification (WebDAV)

provides a new standard for remote file storage. The name itself is ill chosen: WebDAV

has nothing to do with the web, but rather with file storage over the Internet in general.

It does not provide version information as the name suggests, but this is added by an

extension called DeltaV.

So what does WebDAV specify? WebDAV extends the hypertext transfer

protocol (HTTP) with file management function. The original HTTP specification

provides support for authentication, uploading, and downloading of files. WebDAV

provides additional functions for listing, moving, deleting, and locking files. This

provides basic file management functionality. Two extensions to WebDAV provide

support for versioning and more sophisticated access control lists (ACL). [3, 4, 6]



16

The WebDAV standard provides several option levels. Option level 1 provides

basic functionality for upload, download and managing of files. Option level 2 provides

support for file locking. The DeltaV and ACL extensions provide additional option

levels. Each implementor may choose which option levels to actually implement.

WebDAV support is built into most modern operating systems: Windows and

Mac OS X provide native support for WebDAV. Any WebDAV storage can be mounted

and used (almost) like a local file system. Both GNOME and KDE provide very good

support for data stored in WebDAV. All of these have to be looked at in detail:

Starting with Windows 98 all newer versions of Windows support WebDAV

under the name "Web Folders". A WebDAV folder can be mounted like any other file

system by going to "My Network Places", selecting "Add Network Place" and then

typing in the address in the http://server/folder format. The WebDAV folder then

appears like any other network folder on the system. Unfortunately files can not be

edited directly on the server, they have to be copied to a local directory, edited and

then uploaded again. Fortunately many software vendors implement WebDAV support

directly into their applications. Among the most notably are Microsoft Office products

and the Adobe Creative Suite.

At the time of this writing Mac OS X has the best built-in WebDAV support of all

major operating systems. A WebDAV folder can be mounted like any folder in the Finder

under Go / Connect to server. Mac OS X has full read-write support. WebDAV folders

can be used like any other local drive.

The only shortcoming of Mac OS X is that the Mac OS file systems store a file

in two parts: The actual file, and a so called "resource stream". This resource stream

contains additional information, such as the file icon. On non HFS (The Mac OS native

file system) file systems these resource streams are emulated with files that start with

dot-underscore (._). Ideally, a file system driver should know about that and emulate the

appropriate information.

Unix users which use the GNOME desktop are lucky: The standard file browser

in GNOME is Nautilus, which supports WebDAV folders like any other folder. Simply

type the address of a WebDAV folder in the address bar, and you can browse the files.

Unfortunately you cannot open files directly, so you have to do the same as on Windows:

Copy the file to a local directory, edit it, copy it back.



17

Cadaver is a very simple WebDAV client for all Unix systems. Its interface is the

same as the standard command-line FTP client found on all Unix systems. This makes

cadaver somehow tedious to use, but makes it highly portable. Use cadaver if you can't

use any of the other methods.

Davfs2 is the project of building WebDAV support as a file system into the Linux

kernel. Unfortunately, at the time of this writing this project was still in beta stage. [42]

Web-based access to file storage

A web application framework provides the infrastructure necessary to run

applications over the Internet. Traditional web servers have support for static web pages

only. Web applications however require interactive content. Some solutions work on

the client. Client-side Java, Java script and Active-X are the most common examples.

These solutions, however, require special support and software installed on the users

computer. Other solutions run the application on the server. They provide a user interface

by providing HTML pages and using HTML forms for interactivity. They may use

client-side software, but do not require it. These solutions provide more security. Users

do not need to run applications on their own machine. An example of such technology are

Java Servlets and Java Server Pages.

Java Servlets and Java Server Pages (JSP) allow the provision of dynamic content

on web pages. Traditional web pages are static and have to be manually updated on the

server side. With server-side technology such as Servlet and JSP code can be executed

whenever a website is requested. This enables dynamic web applications such as web

shops. While static web pages can be protected by authentication, the pages served if

authenticated are always the same. Dynamic web pages can provide different content to

different users. They may also add special request and response codes to the web page.

[50, 51]

Servlets were first thought of in 1995 by James Gosling. At a later time Pavani

Diwanji picked up the concept and created Servlets that would eventually be part of

the Java Web Server. The first Servlet specification was written by James Davidson.

Java Server Pages were conceived by Anselm Baird-Smith, and later specified by Satish

Dharmaraj in 1999. [52]



18

A Java Server Page is a shortcut version to a Servlet. Most Servlet just wanted to

add a little dynamic content to an already existing web page instead of creating a whole

new page. A JSP is a small part of Servlet code that is added in an otherwise valid HTML

page. It is executed and it's results are added right there into the page. It is usually a good

compromise between just code (Servlet) and just content (HTML).

The big advantages of Java Servlets and Java Server Pages are the dynamic

nature and the large existing software library. Java Servlets allow dynamic content to be

created. They may go from as little as just one line of code to reprogramming the HTTP

protocol and adding new network commands. There are several solutions for dynamic

web applications. JSP and Servlets, however where not just invented for dynamic web

applications, and can therefore fall back on a large library of existing software packages.

And since they are Java based they work on almost any web server platform.

As with all interpreted programming languages there is a performance loss. This

may not be so significant on a single-user system but on a web page with millions of hits

every day this is an issue. Fortunately the Java interpreter provides extensive run-time

optimization with its Hot-Spot engine. But Java Servlets will always use more memory

and CPU than native applications would.

Disconnected Operation

Ideally the Internet would be available everywhere on the world through a high

speed connection. Unfortunately this is not the case yet. On the other hand, human

expectations are more and more global. Data should be available everywhere whether

connected to the network or not. Increasingly users want to use mobile devices, such as

laptops. A distributed file storage system should have support for accessing files offline.

Even in places where the network is usually available there are still many network

outages. Wired networks at any organizations fail at some point in time. In this case, a

distributed file system should not loose any data. It should still provide support for saving

and accessing cached files.



19

The first step to provide support for disconnected operation is to except

disconnection. Many existing system make the assumption that the network is reliable, as

stated in the section called “Eight fallacies of distributed computing.”. Instead, the exact

opposite should be expected: Each machine works independent, and uses data from other

machines if available. If not, it should carry on.

Each node will still have to collaborate with other nodes. They need to provide a

synchronization mechanism. This synchronization mechanism should not depend on any

global state, but rather detect automatically which state two nodes are in. It should then

try its best to synchronize the data in the two nodes.

Sometimes disconnection is predictable. In this case, a distributed file system

should provide support for hoarding. A user may decide to work on certain files at home.

She plugs her computer in at work, selects files for offline work. After a while these files

are made available on the users computer for offline usage. Whenever the user connects

back to the network, the files are synchronized with the rest of the file system.

Manageability

As soon as a system grows larger or has been used for a while it becomes more

difficult to manage. In the case of a file system this means many files, from many users,

on many machines. There are several problems that arise here.

Managing many files means mostly migrating and replicating them among

multiple machines. Files should be available on multiple machines for safety. They

should be available on different machines to not overload a single machine.

A large base of users is another manageability challenge. Each user should have

access to different files in the file system, and only to these files. User access rights

have to be managed. This can not be done by one single person, there must be a way to

delegate access rights to local administrators.

Machine failure and adding machines is a managing problem. When a machine

fails, all the files that where on this machine will have to be moved to other machines.

To do so, they should have been backed up or replicated to another machine beforehand.

When a new machine becomes available, files have to be moved to this machine to

actually utilize it.



20

One way to provide better manageability is to use federated services, as described

in the section called “Service Oriented Architecture”. In a service oriented approach each

machine provides services. Services are automatically discovered and used when they are

available. These services can easily be moved from one machine to another.

Some of these federated services are autonomic optimizer services. These services

can make the decisions a human administrator would make. They can check the current

available resources and make sure they are used according to the policies set by an

administrator. Since federated services are loosely coupled, different optimizer services

can be added and removed based on the needs of a particular system.

Scalability

Another problem arising from a larger file system use is that of scalability. A

system should still perform well, no matter how many machines, files, and users it serves.

Scalability can be achieved by distributing services across multiple machines.

If a service is available on only one machine then this machine will eventually be

overloaded. By making it possible to have services available on as many machines as

needed, scalability can be provided by adding extra hardware.

A paradigm switch has to be made from client-server to federated services.

Classical client-server solutions do not provide good scalability. They depend on a single

server. As soon as the number of requests increases, so does the load on the server.

Federated services, on the other hand, provide a way to load-balance the system. Instead

of sending all requests through one server, the same functionality can be provided by

many services. A requester can pick a service with a low load. Should all services be

overloaded, an administrator can add extra machines.

Reliability

A quality that is particular important for file systems is reliability. A file saved

into a file system should stay there until deleted. Files should never disappear or get lost.

Unfortunately most existing file systems move the responsibility for reliability to the

underlaying hardware. Should the hardware fail, the files are lost.



21

Reliability can be achieved by replication. In the case of a distributed file system

this means replication among different machines. Every file that should be stored reliable

needs to be available on at least two machines at any time. Should one machine fail, there

is still another copy available. There should be another backup copy of that made as soon

as possible to provide reliability again.

Modifiability

Software systems are never stable. They evolve into newer systems. There are two

main reasons a software system needs to evolve: bug fixes and new features.

Every software has bugs. Software is written by humans, and humans make

mistakes. Even the best computer scientists make mistakes [43]. So no matter how well

a software is written and tested, it will always need to be updated to accompany new bug

fixes.

After a while, users grow tired of an existing system and demand new features.

Maybe a new device just came out, but the current computer system does not support it.

Maybe the system is now used by different people who have a different focus and want

different features. In these cases the system needs to be updated to add new features to it.

Dynamic code loading helps to provide modifiability. When an update is available

in classical systems, an administrator has to manually download and install this update.

This works well on a single machine, but is very hard to manage for multiple devices. It

is even worse if there are multiple administrators, but a new version has to be rolled out

immediately. With dynamic code downloading the software checks for a new version

and downloads it whenever it starts. Rolling out a new version is as easy as publishing

a file on a server. All that is needed is for the modified parts of the software to be

reloaded. This may also be triggered from the network. With dynamic code downloading

system-wide administrators can assure that all nodes have the latest version.

Platform independence

Existing computing devices use a wide variety of processors and operating

systems. Supporting each of them with a custom solution is a major undertaking. An

easier solution is using a virtual machine. An application would have to be written for

that virtual machine. Only the virtual machine has to be ported to different platforms. The



22

programs are compile into byte code. This byte code can be reused on any of these virtual

machines. This makes code mobility possible. The most commonly used virtual machines

are the Java virtual machine and .NET.

An example virtual machine specification is the Java virtual machine (Java VM).

Originally specified by Sun it is now being developed through a community process.

Byte code that is compiled for a certain version of the Java virtual machine will run on

any JVM that complies with these specifications. Example Java VM implementations are

provided by Sun, IBM, Apple, and several open-source development teams. [10, 44, 45,

46, 47]

Originally intended to run on home appliances, the Java VM is now available on

all modern desktop and server operating systems. The Java environment provides both

an object-oriented language and a runtime system. The language is similar C++, which

used to be the most widely used programming language. The runtime system provides

the same functionality across all platforms. Java is a true write once - run everywhere

language. Even modern mobile devices, such as personal digital assistants (PDA) and cell

phones now provide support for the Java platform. In the heterogeneous environment of

the Internet there is almost no way around a platform independent runtime system like

Java. [48, 49]

Java also provides many built-in libraries. Unlike traditional programming

languages, the Java standard requires a wide range of standard features. If a given Java

runtime version is installed on a particular machine, all standard libraries will have be

included.

Service Orientation

Service oriented architectures provide most of the given architectural qualities

for distributed systems. It is therefore necessary to investigate service orientation and

understand how it functions.

Eight fallacies of distributed computing.

To understand the motivation behind the service-oriented paradigm the common

fallacies of network computing have to be investigated first. Peter Deutsch defined eight

fallacies of network computing as follows: [55]



23

Essentially everyone, when they first build a distributed
application, makes the following eight assumptions. All prove to be false
in the long run and all cause big trouble and painful learning experiences.
1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

In a service oriented system, none of the assumptions are made. Instead, it is

always assumed that these eight points are false.

Service Oriented Architecture

Instead of thinking of a service offered by a particular host, the paradigm shift

should be towards services in the network — the computer is the network. In classical

distributed applications, it is necessary to know exactly on which host a particular service

is exposed. In most distributed file systems, for example, it is necessary to know the

name of a host that a particular file is stored on. In a service-oriented environment a

service provider registers itself with a service registry. The service registry facilitates

lookup of services. Once a service is found a service requester binds to the service

provider and then can invoke its services. Requesters do not need to know the exact

location of a provider beforehand, they can find it dynamically. They discover a registry

and then lookup a service. On the other hand, a provider can discover the registry and

publish its own service, as depicted in Figure II.1, “Service-Oriented Architecture”.



24

Figure II.1. Service-Oriented Architecture

A service is identified by an interface (type) rather than its implementation,

protocol, or name. If a service provider registers by name, the requesters have to know

the name of the service beforehand. Registering services by interface has the advantage

that the actual implementation can be replaced and upgraded independently from

the requesters. Different implementations may offer different features internally, but

externally have the same behavior. This independent type-based identification allows

for flexible execution of service-oriented programs in an environment with replicated

services.

A service-oriented program is composed of tasks, jobs, and service contexts.

Figure II.2, “Service oriented Tasks and Jobs” shows an example of service tasks and

jobs. These concepts are defined differently than in classical grid computing. A service

job is a structured collection of tasks and jobs. A task corresponds to an individual

method to be executed by a service provider. A service context describes the data that

tasks works on. This approach is different from classical grid computing, where a job

corresponds to the individual method. In UNIX analogy the individual tasks correspond

to UNIX programs and commands. The context would be the input and output streams.

A job corresponds to a shell script or a complex command line connecting the tasks

together. Service-oriented programs can be created interactively and allow for a federated

service environment. [30]



25

Exe rtionIm plExe rtionIm pl

<<inte rfa ce >><<inte rfa ce >>
Exe rtionExe rtion

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

S e rvice Ta s kS e rvice Ta s k

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

S e rvice J obS e rvice J ob

e xe rt(S e rvice re xe rt(S e rvice r): Exe rtion): Exe rtion

Figure II.2. Service oriented Tasks and Jobs

In a federated service environment not a single service makes up the system,

but the cooperation of services. A service-oriented job may consist of tasks that require

different types of services. Services can be broken down into small service methods

instead of providing one huge all-embracing service. These smaller methods then can be

distributed among different hosts to allow for reusability, scalability, reliability, and load

balancing.

Instead of applying these grid concepts to computational tasks, they can, and

should, also be applied to data. Once a file is submitted to the network it should stay

there. It should never disappear just because a few nodes or the network segment goes

down. Also, it should not matter what client node the file is requested from. With the

SILENUS distributed file system in place, SORCER will also provide reliable and

scalable file-based data services complementing the existing method services.



26

Jini Network Technology

The Jini network technology enables Java software to create dynamic networks

that are adaptive to change. Jini uses a Service Oriented Architecture approach to

network services. It is especially useful for scalability, evolvability and flexibility.

Services can easily be replaced in runtime, started on multiple servers, or even migrated

form one computer to another. [26, 58]

Jini technology was originally created by Sun. It was then contribute to the Jini

Community in 1999. It is based on an open specification that can be developed through a

community process. The reference implementation is provided still provided by Sun.

Jini provides almost everything necessary for service oriented computing, as

described in the section called “Service Oriented Architecture”. Jini makes it easy to

write services. Each service can register with a service registry. Service registries can be

discovered by multicast announcements. Service requesters may use the service registry

to find services and use them.

The dynamic nature of Jini is handled with leases. Each network service

registering with another network service must obtain a lease. The lease must be renewed

in given intervals or it will expire. This allows the detection of unreachable nodes, while

putting the actual load on the requesting object, not the provider. Lease times may be

adjusted depending on the stability of the network involved. A reliable network can work

with higher lease times, while it is very desirable to have shorter leases in unreliable

networks to detect disconnection quickly.

Jini also provides a standard to attach user interfaces to services. This ServiceUI

standard allows the development of Jini service browsers. A Jini service browser will

pick up all the registrars and display their services. If a service has an attached user

interface the service browser can download and display that user interface to the user

without having to install or configure any software locally. One example of such a

service browser software is the IncaX Service Browser. [11, incax]



27

Peer-to-peer networking

Another network technology widely used for modern distributed architectures

is peer-to-peer networking. In peer-to-peer applications each peer is equal. Peers

communicate through an overlay network directly with each other. This eliminates the

classical bottlenecks in client–server solutions.

Unfortunately peer-to-peer has a bad reputation. It was first widely used by the

application "Napster". Users were able to share music files with other users in a fairly

fast and reliable way. In the peer-to-peer architecture files are downloaded from other

users rather than a central server. This makes peer-to-peer technology hard to control. It

is therefore very often used to illegally distribute files. Some companies even want to ban

peer-to-peer technology because of that. However, peer-to-peer also has many legitimate

uses. Most Linux distributions are now released through peer-to-peer technology to save

server capacity and increase download speed. Common peer-to-peer applications today

include Gnutella, KaZaa, eDonkey, BitTorrent, and JXTA.

JXTA (short for Juxtapose) is a set of protocols that allow any device on the

network to communicate and collaborate. JXTA provides an overlay peer-to-peer

network that clients can use to communicate with each other. The JXTA protocols are

defined language independent. A reference implementation for Java exists and is very

stable. [54]

The JXTA project was originally started at Sun by Bill Joy and Mike Clary. The

specifications and implementation where then made open-source and available on the

JXTA web page.

JXTA focuses on peer-to-peer technology. Discovery in JXTA is made by

the provider sending out service advertisements. These have to be sent out regularly

for service requesters to find them. So called rendezvous peers can cache these

advertisements. Once a requester has found a service advertisement it can use the JXTA

overlay network to acquire a virtual channel between the requester and the provider. This

channel can then be used to send messages back and forth.

JXTA is built for far distributed peers in an unstable network. A cached

advertisement may provide a link to a service that has not been existent for a long time.

It has therefore be actually attempted to use the service before any assumptions of its

availability can be made.



28

When comparing JXTA an JINI the first distinction is the range of its application.

JINI is designed for local area networks (LAN) and can be used over WANs with the use

of special proxies. JXTA is designed for wide area networks (WAN) and all its network

overlay is based on that. Fortunately these two can be combined: Jini requests can be

sent over the JXTA network. This provides the best of both worlds: Fast, optimized local

access and reliable remote access via the JXTA network. [27]

SORCER

SORCER is a federated S2S framework that treats service providers as network

objects with a well defined semantics of service-object-oriented (SOO) programming

based on the FIPER technology. [28, 29, 30]

Each SORCER provider offers services to other peers on the object-oriented

overlay network. These services are exposed indirectly by methods in well-known public

remote interfaces and considered as elementary (tasks) or compound (jobs) program

instructions of SOO programming methodology [28]. A SORCER program can be

created interactively [30] or programmatically (using SORCER APIs) and their execution

can be monitored and debugged in the overlay network [31]. Service providers do not

have mutual associations prior to the execution of a SOO program; they come together

dynamically (federate) for all component tasks and jobs in the SOO program.

Each provider in the federation executes a task, or a job. A job is coordinated by a

Jobber - one of SORCER infrastructure services [28]. However, a job can be sent to any

peer. A peer that is not a jobber is responsible to forward the job to an existing jobber in

the SORCER grid and return results to the requester. Thus, any peer can handle any job

or task. Once the job execution is complete, the federation dissolves and the providers

disperse and seek other SOO programs to join. Also, SORCER supports a traditional

approach to grid computing - like in Condor [32] and Globus [33] style. Here, instead

of SOO programs being executed by services providing a business logic for requested

tasks, the business logic comes from the service requesters executable programs that

seeks compute resources on the network provided by grid services. These services in

the SORCER grid are as follows: GridDispatcher and Jobber for traditional grid job

submission; Caller and Tasker for task execution. [34]



29

To integrate applications and tools on a B2B grid with shared engineering data,

the File Store Service (FSS) [35] was developed as a core service in SORCER. The value

of FSS is enhanced when both web-based user agents and service providers can readily

share the content in a seamless fashion. The FSS framework fits the SORCER philosophy

of grid interactive SOO programming, where users create distributed programs using

exclusively interactive user agents. However FSS does not provide the S2S flexibility

with separate specialized and collaborating service providers for file storage, replication,

and meta information that are presented in this dissertation.

Eight truth of networked computing

Based on the fallacies given in the section called “Eight fallacies of distributed

computing.” service oriented architectures take into account the following eight truth of

distributed networking:
1. The network can fail at any time
2. Network messages arrive in random order
3. The network is always too slow
4. Someone is always listening
5. Machines get added and removed at any time
6. Every system has its own administrator
7. Moving data costs money
8. There will be any possible combination of OS / Architecture out there. They all want

to be part of the network!



30

CHAPTER III. REQUIREMENT ANALYSIS

The requirements for the system need to be identified, before the actual system is

designed. It needs to be clear which requirements must be met. After all, there is no point

in developing a system that solves the wrong problem.

Most of the requirements have already been identified. the section called “File

system core features” describes the features that are desirable in any file storage solution.

the section called “Architectural qualities for distributed systems” described architectural

qualities for distributed systems in general. To identify the exact requirements system

usage patterns have to be investigated. Based on these user roles have to be identified.

Scenarios

To identify the requirements different scenarios have to be looked at first. Who

would benefit from an advanced file system? Who would be using this file system and

why. And what are the things that are important to this particular user group. Of course,

in the real world, there will not be a scenario exactly as described here, but rather a

mixture. But theses examples will still help to find the actual uses.

Small work group

I will start with the small work group because this is very easy do describe.

Figure III.1, “Small work group” shows an example. In most cases there is one file

server, one Internet-gateway (sometimes the same machine) and a small number of client

machines (maybe five). Usually all client machines are either personal computers or

shared machines. All data transfer is done via shared folders on the server.

This system lacks privacy. In most cases there is a shared folder on the server. All

users can read and store files there. There is nothing holding back one user from deleting

the file of another user.

There is also usually no or a tedious backup system. All work has to stop should

the server fail. And in the case of an unrecoverable crash all previous work could be lost.



31

Last, but not least, the client machines are not used to their full potential. Most

have extra hard drive space and, depending on the type of work, extra clock cycles. Some

machines are turned off at night, but others are just running idle, using electricity and

providing nothing for other users.

A typical small work group example. This work

group has one server and five clients (four PCs, one laptop)

Figure III.1. Small work group

High Performance Computing Lab

A high performance computing lab is very similar to the small work group. The

clients here are not idle, the distribution of CPU cycles is already taken care of. But many

applications require a common data set. This is usually very large, and therefore not on

every machine, but on one single server. Multiple machines (25, 50, 100, ...) are trying to

get parts of the dataset at the same time. If not carefully planned, this performance leak

can seriously reduce performance.

Large network

A large network is similar to the small network. But suddenly there are more

than one server. Some of these might provide backup for other servers. A very important

feature here is that users want to be able to log into a different computer, maybe even in

a totally different location and still want to be able to access their files. Files should be

stored as close to the user as necessary, for performance, but should also be migratable to

other machines. Maybe two people from different location have to share common files.

They should be able to share these files quickly.



32

Home user

The total opposite of the large network is the home user. The home user usually

has very few computers. Maybe one desktop and a laptop, maybe two PCs for multiple

people. Disk space is always low. Machines usually have very different performance

features, I might be asked to move to the other computer because my brother wants to

play a game. In the case of the home user transparent file access to as much disk space as

possible is very important.

Concurrent Engineers

Distributed, concurrent engineering teams would greatly benefit from this system.

They work at different physical locations, on different computer systems, with different

computer architectures. However common data such as design documents, schedules,

engineering data, notes, etc. have to be shared. The support for versioning will allow

the team to go back to older versions, if necessary, but most importantly to ensure

that the current version is available to all team members instantly. Data will always be

downloaded from one of the hosts available. If a file is already available on a host in

the local network this location will be preferred over a host at any remote location. This

enables faster updates and ensures that slower WAN links are less used.

Student Computer Lab

A computer lab is a large array of computers. All computers should behave

identically to the user, and offer the same file space. These lab systems usually use a

central file storage server, which is a single point of failure. However, each lab host has a

big hard drive nowadays, which is hardly used, if at all.

Astronomy

In a sky survey [36] the amount of data collected is very large. There must be

some way to spread data files over multiple computers, or to make whole or partial files

available to different users on different hosts. These files are usually associated with

metadata. The metadata has to be kept in some kind of database to allow fast retrieval of

the important data.



33

High energy physics

When the Large Hadron Collider (LHC) study of subatomic particles and forces

at CERN will launch in 2007, it will be one of the greatest data management challenges.

More than a gigabyte of data will be generated every second. This data will have to

be distributed among researchers around the world. With these large amounts of data

it is very important to prefer local replica over remote replica locations to minimize

bandwidth usage. [37]

Machine types on the network

Based on these usage scenarios, machines participating in the network can be

classified. Each machine type has different properties.

Server

Server machines are usually very reliable. They might have a RAID system, have

fail over power supplies, multiple network interfaces, etc.. Server class computers are

the easiest to use for administrators of distributed storage systems. One one system has

to work, only one system has to be backed up. Unfortunately there also have to be client

systems to make actual usage of the server.

Always up client

Administrators favorite client machines are the ones that are always up. These

can easily be maintained remotely. They can be also be used to provide additional server

features. However, not too many server features, since there is always a person wanting

to work on the machine.

Work time up client

Work time up clients are usually on 40 hours a week. A person turns her personal

computer on whenever she enters the office, and turns it off whenever she leaves. Most

leave the machine running during lunchtime, but even that is uncertain. Usually these

are personal machines, the user is concerned about speed of her own files, and feels the

machine slow down if other people access data on the same machine.



34

Laptop

A laptop is the most complicated system to support when it comes to distributed

file systems. Usually laptops are moved around from one network to another, connecting

and disconnecting it from servers all the time. Fortunately laptop users are used to this,

and therefore can be expected to specify which files they want to work on before they

disconnect. But as soon as the laptop is connected to the Internet the laptop user wants to

be able to access her files.

Mobile client

The last type of user is a special case of the laptop user, the so called mobile

client. When talking about mobile, I mean small devices like personal digital assistants

(PDA) and cell phones. These devices usually connect temporary to the network with a

very low bandwidth. Users don't expect to have access to all data, but they do want to

have certain files available, usually calendar, address book and notes.

Usage roles

Based on these usage scenarios different usage roles can be defined. These roles

are: Regular file system users, administrators, optimizer services, service provisioners,

and intergrid service providers.



35

File system users

Figure III.2. Typical user cases for a file storage system

Figure III.2, “Typical user cases for a file storage system” shows the use cases

that are identified for the regular user. These are typical tasks that can be executed on any

existing file system.

Administrators

Figure III.3. Administrator use cases for a replicated file system



36

Figure III.3, “Administrator use cases for a replicated file system” shows the

use cases for administrators. The administrator has the power to initiate all replication

manually. If needed, administrators should be able to completely delete files.

Optimizer services

Figure III.4. Optimizer use cases for a replicated file system

To provide manageability the system should provide internal optimizer services.

Figure III.4, “Optimizer use cases for a replicated file system” shows the use cases for

these optimizer services. They have to be able to manage file replication by creating and

deleting file replicas.

Service provisioners

Figure III.5. Provisioner user cases for a replicated file system



37

The service provisioner is another type of optimizer service. As Figure III.5,

“Provisioner user cases for a replicated file system” shows a provisioner has to be able to

start (provision) and stop services in the network. To make the decision which services to

start or stop it needs to be able to query the current state of each service.

Intergrid service providers

Figure III.6. Use cases for the intergrid meta computer

Another type of usage roles are intergrid service providers. These provide

computing services, providing a meta computer. Figure III.6, “Use cases for the intergrid

meta computer” gives an overview of the use cases required for meta computing. A

service has to be able to find data files provided, download them, and upload them after it

is done processing.



38

CHAPTER IV. DESIGN

A service-oriented approach is chosen to satisfy the given requirements. The

system will be broken up into smaller components which will be implemented as

services. Each service has a specific responsibility. Since all services are dynamic

in nature, there is no specific deployment to any particular host. Each host can host

none, one, some or all of the services. These services will use the SORCER network to

communicate with each other.

Figure IV.1. Components in the SORCER network



39

System architecture

Figure IV.2. SILENUS components

Figure IV.2, “SILENUS components” gives an architectural overview over the

SILENUS system. It shows the SILENUS components and the how they interact with

each other. The individual parts are from the left to the right:

The leftmost components provide external interfaces with existing systems. The

ones given here are just examples, adapters could be written for any other existing file

storage solution. The human interface (ServiceUI) provides support for file storage and

management through a proprietary user interface. It provides access to the extra features

which are not available through the other interfaces: Advanced features such as manual

migration, number of replicas, log-file viewing, etc.. The service interface should only be

needed for these extra features and can be ignored by most users. The WebDAV adapter

provides support for existing applications, as explained in the section called “WebDAV”.

This gives current operating systems the possibility to use the file storage without having

to install a client. A NFS adapter provides support for older Unix systems. The content

management service (CMS) interface is a standard used for file sharing across the JXTA

network.



40

The gateway to the SILENUS file storage is the SorcerFileStore interface,

provided by the SILENUS facade component. This component provides a facade to

the underlaying services. It takes care of transactional semantics between file and meta

information storage. It provides one easy interface for the user.

The SorcerMetadataStore interface, implemented by the metadata store service

provides support for the storage of file metadata. File metadata is all the information that

is either included in the actual file data or that can be derived from the file data, such

as file name, creation date, file type, type of encryption, etc.. Information on where the

actual file is located is also stored in here. Multiple versions of one file may exist in the

database for recovery purpose.

The SorcerByteStore interface, implemented by the byte store services provides

support for the storage of the actual file data. It provides fast access to the files stored on

the provider's machine. Files are usually stored encrypted, but can be unencrypted for

performance reasons

The TransactionManager interfaces, provided by Jinis Mahalo service is needed

to coordinate file uploads between the metadata store and the byte store. Only if both

succeed should the file actually be available.

The SorcerOptimizer interface provides support for network optimizer services.

One example of these services is the ByteReplicator service. It will make sure that

uploaded files are replicated among different byte store nodes to provide redundancy.

Optimizer services can request log information from the storage providers, and can

automatically initiate replication and migration. They can detect usage patterns and make

sure that the files are available to the user. They can detect non-responding systems and

automatically replicates all files that were stored on it. They also makes sure that all

storage servers have the latest version of the files.

After this overview over the services and their interactions the individual services

can now be looked at in more detail.



41

Service user interface

Figure IV.3. Component diagram for the user interface

To work with the file system, users need an interface. None of the compatibility

interfaces can provide access to all of SILENUS capabilities. Therefore and additional

user interface is provided.

The user interface is dynamically downloaded when needed. Unlike traditional

systems that require installation on a client computer, SILENUS user interface is

dynamic. The users needs to have a service browser installed. This service browser can

detect services running in the network. It can then download and display these provided

user interfaces. There is no actual configuration needed on the client computer.

WebDAV adapter

Figure IV.4. Component diagram for the WebDAV adapter

The WebDAV adapter provides the connection from existing applications and file

systems to the SILENUS file storage system, as shown in Figure IV.5, “The WebDAV

adapter”.



42

OpenBSD
Open BSD

Figure IV.5. The WebDAV adapter

The WebDAV adapter uses Java Servlet technology to handle requests instead

of rewriting a complete new server software. WebDAV is based on HTTP, as explained

in the section called “WebDAV”. Therefore, existing application servers that handle

HTTP can be reused to provide a WebDAV server. One of these technologies is Java

Servlets, as explained in the section called “Web-based access to file storage”. The

Servlet standard provides functionality for handling HTTP requests with the HttpServlet

interface. It is very easy to add the additional functionality required for WebDAV.

Incoming WebDAV requests will have to be mapped to the appropriate file

store requests. Most requests are straightforward: GET and PUT will be implemented

using the upload and download functions. PROPFIND uses the request node info, and

PROPPATCH will set node info. LOCK requests can be ignored, but need to be handled

internally to provide consistency.

The implementation and details of the WebDAV adapter is a pending master

thesis topic for Fajin Wang.



43

File store

Figure IV.6. Component diagram for the SILENUS facade

The SORCER File Store interfaces provides a facade to the SILENUS network

for clients that want to use the system. Since the metadata and actual file contents are

stored in different services there is need to coordinate between these two services. To

make use of the file system easier this functionality is combined in the SILENUS facade

with the File Store interface.

Most file store functionality is very straightforward and just consists of

forwarding a request to the appropriate service. Actions like retrieving file metadata or

setting file metadata can be directly forwarded to a metadata store.

File download has to be coordinated between two services: The file metadata has

to be retrieved from the metadata store. This metadata contains information about the

byte store that carries the file contents. A connection has to made with that particular byte

store.

File upload requires the use of transactional semantics. When a file is to be

uploaded, two things have to be created: A new node in a metadata store, and the file data

has to be uploaded to a byte store. To save time both requests can be started in parallel.

However, it is very important that, should one of them fail, the other one is cancelled.

Figure IV.7, “File upload transactional semantics” shows this transactional semantics.



44

File Upload Request

Send Metadata
to MetadataStore

Create ByteSequence
in ByteStore

create Transaction

Upload File
to ByteStore

commit

[success]

abort

[failure]

commit

[success]

abort

[failure]

make Metadata
permanent

[both commit]

make File permanent

[at least one failed]

undo Metadata delete file

Figure IV.7. File upload transactional semantics

To support the transactions a separate transaction service is needed. Fortunately

Jini already provides a standard for the Transaction Manager interface. It also provides a

reference implementation, called Mahalo, that implements this interface. The SILENUS

facade can use either this or any other service that provides transactions to ensure that

both operations succeed.



45

Metadata store

Figure IV.8. Component diagram for the metadata store

The file meta information is stored in key-value pairs for each file. The key

describes the kind of attribute (e.g. file name, creation date), where as the value describes

the value of the attribute.

There are two types of file attributes. Basic attributes are of type string or are

easily represented in string form. Extended attributes can be any Java object. This

distinction is necessary when retrieving file attributes: Instead of having to choose a list

of attributes, a client can chose to get either just the basic attributes or all attributes. This

makes look-ups for basic attributes fast, but does not limit the attribute types.

The two attributes parent and mime type are used to create the well-known

hierarchical file system structure. Every node except for the root directory has exactly

one parent node. The mime type describes the type of the file. A special mime type is

used for directories.

The metadata store meta information is needed for metadata store

synchronization. The metadata store needs to keep track of which file versions it has and

when the last synchronization has occurred.

As in internal database an embedded database is chosen. Using an embedded

database makes installation much easier, it does not require the installation of external

database software. The database access itself is done using the data access object pattern

to extensibility and support for other databases if needed. A high performance computing

lab, for example, could set up commercial database software to increase performance.



46

Byte store

Figure IV.9. Component diagram for the byte store

The byte store service stores the actual file data. In the analogy of hardware this

would be the actual hard drive.

Files in a byte store are identified uniquely by the ID of the byte store and an

entry ID in the byte store. These ID numbers never change. This makes the file storage

independent from file metadata such as the file name. The byte store services provides

nothing but support for file storage. The advantage is that this service can be then

optimized for performance. Adam Turner is currently working on his master thesis

investigating potential performance optimization using a BitTorrent like file distribution.

Unlike the metadata stores the byte stores are not synchronized. File data is much

larger than file metadata. Would the file data be replicated on every node the storage

capacity would be filled very quickly. It is the job of the optimizer services to provide file

data replication.

Optimizer

Figure IV.10. Component diagram for the optimizer

The optimizer services keep the network in good shape. There can be many

different optimizer services that provide different optimizations.



47

One example service is the ByteReplicator optimizer service. This service gets

triggered when a new file or a new version of a file is uploaded to the file system. It will

then look for another byte store that has enough storage space. It tells the other byte store

to replicate the file. After the file is replicated, it will update the metadata stores to have

the new location information. This ensures reliability by providing multiple copies. But

not only new files can trigger replication. If a byte store service becomes unavailable,

all files that where stored on that services are potential candidates for replication: They

may now exist in the network only once, not providing reliability. In this case, the

ByteReplicator has to trigger another replication.

Another type of optimizer services is an autonomic provisioner. When the file

system becomes full, the provisioner may start more byte store services. When the file

system is sparsely used, these byte store services may be shut down. When the metadata

stores and the SILENUS facade get to many requests, the provisioner may start provision

new services in the network. When the number of requests go down, the provisioner may

stop these services.



48

CHAPTER V. VALIDATION

TBD



49

CHAPTER VI. CONCLUSION

TBD



50

BIBLIOGRAPHY

NORMATIVE DOCUMENTS

[1] RFC 1094. Sun Microsystems. “NFS: Network File System Protocol specification”.
IETF. 1989. http://www.ietf.org/rfc/rfc1094.txt.

[2] RFC 1813. B. Callaghan, B. Pawlowski, and P. Staubach. “NFS Version 3 Protocol
Specification”. IETF. Jun 1995. http://www.ietf.org/rfc/rfc1813.txt.

[3] RFC 2518. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen.
“HTTP Extensions for Distributed Authoring – WEBDAV”. IETF. 1999.
http://www.ietf.org/rfc/rfc2518.txt.

[4] RFC 3253. G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. Whitehead.
“Versioning Extensions to WebDAV (Web Distributed Authoring and
Versioning)”. IETF. 2002. http://www.ietf.org/rfc/rfc3253.txt.

[5] RFC 3530. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. “Network File System (NFS) version 4 Protocol”. IETF. 2003.
http://www.ietf.org/rfc/rfc3530.txt.

[6] RFC 3744. G. Clemm, J. Reschke, E. Sedlar, and J. Whitehead. “Web Distributed
Authoring and Versioning (WebDAV) Access Control Protocol”. IETF. 2004.
http://www.ietf.org/rfc/rfc3744.txt.

[7] “Data Encryption Standard (DES)”. FIPS PUB. 46. U.S. Department of commerce.
National Institute of Standards and Technology. Jan 1977.

[8] “Announcing the Advanced Encryption Standard (AES)”. FIPS PUB. 197. National
Institute of Standards and Technology. Nov 2001.

[9] Java Cryptography Extension (JCE) for the Java 2 SDK, v 1.4.
http://java.sun.com/products/jce.

[10] The Java™ Virtual Machine Specification (2nd Edition). Apr 99. Addison-Wesley
Professional. Tim Lindholm and Frank Yellin. 0201432943.

[11] The ServiceUI API Specification, v. 1.1a. Jun 2005. Bill Venners.
http://www.artima.com/jini/serviceui/Spec.html.

[12] Open Distributed Processing. Reference Model. 10746. ISO/IEC. 1995.

ARTICLES

[13] Paul Leach and Dan Perry. “CIFS: A Common Internet File System”. Nov 1996.
Microsoft Interactive Developer.

url(http://www.ietf.org/rfc/rfc1094.txt)
url(http://www.ietf.org/rfc/rfc1813.txt)
url(http://www.ietf.org/rfc/rfc2518.txt)
url(http://www.ietf.org/rfc/rfc3253.txt)
url(http://www.ietf.org/rfc/rfc3530.txt)
url(http://www.ietf.org/rfc/rfc3744.txt)
url(http://java.sun.com/products/jce)
url(http://www.artima.com/jini/serviceui/Spec.html)


51

[14] Richard Sharpe. Just what is SMB?. Oct 2002.
http://samba.org/cifs/docs/what-is-smb.html.

[15] M. Satyanarayanan. “Coda: a highly available file system
for a distributed workstation environment”. 114–116.
http://ieeexplore.ieee.org/iel5/267/3322/00109279.pdf. Workstation operating
systems: proceedings of the Second Workshop on Workstation Operating Systems
(WWOS-II), September 27--29, 1989, Pacific Grove, CA. IEEE Computer Society
Press. 1989. 0-8186-2003-X. 0-8186-5003-6 (microfiche).

[16] M. Satyanarayanan. “Coda: A Highly Available File System
for a Distributed Workstation Environment”. Jul 1999.
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/wwos2.pdf.

[17] Ann L. Chervenak, Bill Ahcock, Carl Kesselman, Darcy Quesnel, Ian
Foster, Joe Bester and John Bresnahan, Sam Meder, and Steven
Tuecke and Veronika Nefedova. “Data Management and Transfer in
High-Performance Computational Grid Environments”. Sep 2002.
http://www.globus.org/research/papers/dataMgmt.pdf.

[18] Asad Samar, Bill Allcock, Brian Tierney and Heinz Stockinger, Ian Foster,
and Koen Holtman. “File and Object Replication in Data Grids”. Sep 2002.
http://www.globus.org/research/papers/FileRepCluster02.pdf.

[19] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Mary Manohar and Sonal Patil, and Laura Pearlman.
“A Metadata Catalog Service for Data Intensive Applications”.
http://www.sc-conference.org/sc2003/paperpdfs/pap242.pdf. SC2003: Igniting
Innovation. Phoenix, AZ, November 15--21, 2003. ACM Press and IEEE
Computer Society Press. 2003. 1-58113-695-1.

[20] Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshaw. “Grids:
Harnessing Geographically-Separated Resources in a Multi- Organisational
Context”. 2001.

[21] Peer-to-Peer Computing. Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran
Nagaraja, Jim Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu. Mar 2002.

[22] The Legion Grid Portal. Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey,
and Andrew S. Grimshaw. 2002.

[23] Symphony A Java-based Composition and Manipulation Framework for
Computational Grids. Markus Lorch. Jul 2002.

[24] Multivariate Minimization Using Grid Computing. Kandle Kulish, Jerry Perez, and
Phil Smith.

[25] R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”. Communications of the ACM. 21 (2). 120 - 126.
1978.

[26] Build a Compute Grid with Jini™ Technology. Dec 2004.
http://www.jini.org/whitepapers/JINI_ComputeGrid_WP_FINAL.pdf.

url(http://samba.org/cifs/docs/what-is-smb.html)
url(http://ieeexplore.ieee.org/iel5/267/3322/00109279.pdf)
url(http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/wwos2.pdf)
url(http://www.globus.org/research/papers/dataMgmt.pdf)
url(http://www.globus.org/research/papers/FileRepCluster02.pdf)
url(http://www.sc-conference.org/sc2003/paperpdfs/pap242.pdf)
url(http://www.jini.org/whitepapers/JINI_ComputeGrid_WP_FINAL.pdf)


52

[27] Beyond Web Services. Combining Jini™ Network Technology and “Project JXTA”
to Take Advantage of Edge Computing. JavaOne, Sun's 2003 Worldwide Java
Developer Conference. Carlos Queiroz, Bruno Souza, and Einar Saukas.

[28] Michael Sobolewski. “Federated P2P Services in CE Environments”. 13–22.
Advances in Concurrent Engineering. A.A. Balkema Publishers. 2002.
90-5809-502-9.

[29] Michael Sobolewski. “FIPER: The Federated S2S Environment”.
JavaOne, Sun's 2002 Worldwide Java Developer Conference. 2002.
http://servlet.java.sun.com/javaone/sf2002/conf/sessions/display-2420.en.jsp.

[30] R. Kolonay and Michael Sobolewski. “Grid Interactive Service-oriented
Programming Environment”. 97–102. Concurrent Engineering: The Worldwide
Engineering Grid. Tsinghua Press and Springer Verlag. 2004. 7-302-08802-0.

[31] Sekhar Soorianarayanan and Michael Sobolewski. 89–95. “Monitoring Federated
Services in CE”. Concurrent Engineering: The Worldwide Engineering Grid.
Tsinghua Press and Springer Verlag. 2004. 7-302-08802-0.

[32] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Condor and the Grid”.
Grid Computing: Making The Global Infrastructure a Reality. John Wiley. Fran
Berman. Anthony J.G. Hey. Geoffrey Fox. 2003. 0-470-85319-0.

[33] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. “Grid Services for
Distributed System Integration”. Computer. 35. 6. 37–46. Jun 2002. 0018-9162.
http://csdl.computer.org/dl/mags/co/2002/06/r6037.pdf.

[34] Vivek Khurana, Max Berger, and Michael Sobolewski. “A Federated Grid
Environment with Replication Services”. Next Generation Concurrent
Engineering. Omnipress. 2005. 0-9768246-0-4.

[35] Michael Sobolewski, Sekhar Soorianarayanan, and Ravi-Kiran Malladi
Venkata. 633–639. “Service-Oriented File Sharing”. CIIT conference
(communications,internet and information technology). Nov 2003.

[36] Robert Lupton, F. Miller Maley, and Neal Young. “Data Collection for the Sloan
Digital Sky Survey–-A Network-Flow Heuristic”. Journal of Algorithms. 27. 2.
339–356. May 1998.

[37] Eva Arderiu Ribera. “LHC Distributed Data Management”. Nov 1998.
http://wwwinfo.cern.ch/asd/rd45/papers/proc_108.ps.

INTERNET RESOURCES

[38] OpenAFS. http://www.openafs.org.

[39] Globus Alliance. http://www.globus.org.

url(http://servlet.java.sun.com/javaone/sf2002/conf/sessions/display-2420.en.jsp)
url(http://csdl.computer.org/dl/mags/co/2002/06/r6037.pdf)
url(http://wwwinfo.cern.ch/asd/rd45/papers/proc_108.ps)
url(http://www.openafs.org)
url(http://www.globus.org)


53

[40] Sybase Avaki EII.
http://www.sybase.com/products/developmentintegration/avakieii/
distributedarchitecture.

[41] Libgcrypt. http://www.gnupg.org.

[42] WEB-DAV Linux File System(davfs2). Sung Kim. http://dav.sourceforge.net/.

[43] Knuth reward check. http://en.wikipedia.org/wiki/Knuth_reward_check.

[44] Java Technology. Sun Microsystems. http://java.sun.com/.

[45] Java technology. IBM. http://www-128.ibm.com/developerworks/java.

[46] Java for Mac OS X. Apple Computer. http://www.apple.com/macosx/features/java/.

[47] Kaffe.org. http://www.kaffe.org/.

[48] Java Technology. http://www.java.com.

[49] Java 2 Platform, Micro Edition (J2ME). http://java.sun.com/j2me.

[50] JavaServer Pages Technology. http://java.sun.com/products/jsp/.

[51] Java Servlet Technology. http://java.sun.com/products/servlet/.

[52] Jim Driscoll's Blog. Servlet History. Jim Driscoll.
http://weblogs.java.net/blog/driscoll/archive/2005/12/servlet_history_1.html.

[53] Phil Bishop. IncaX. http://www.incax.com.

[54] JXTA. http://www.jxta.org/.

[55] The Eight Fallacies of Distributed Computing. Peter Deutsch.
http://today.java.net/jag/Fallacies.html.

BOOKS

[56] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall. Jan 2002. 0130888931.

[57] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in
C, Second Edition. Wiley. Oct 1995. 0471117099.

[58] Jan Newmarch. A Programmer's Guide to Jini Technology. Apress. Nov 2000.
1893115801.

url(http://www.sybase.com/products/developmentintegration/avakieii/distributedarchitecture)
url(http://www.sybase.com/products/developmentintegration/avakieii/distributedarchitecture)
url(http://www.gnupg.org)
url(http://dav.sourceforge.net/)
url(http://en.wikipedia.org/wiki/Knuth_reward_check)
url(http://java.sun.com/)
url(http://www-128.ibm.com/developerworks/java)
url(http://www.apple.com/macosx/features/java/)
url(http://www.kaffe.org/)
url(http://www.java.com)
url(http://java.sun.com/j2me)
url(http://java.sun.com/products/jsp/)
url(http://java.sun.com/products/servlet/)
url(http://weblogs.java.net/blog/driscoll/archive/2005/12/servlet_history_1.html)
url(http://www.incax.com)
url(http://www.jxta.org/)
url(http://today.java.net/jag/Fallacies.html)


54

COLOPHON

This thesis was written with the XMLmind XML editor using docbook xml 4.4.

It was translated using a customized version of the docbook-xsl stylesheets 1.69.1. The

translation was done using the xalan processor 2.7. The typesetting was done using fop

svn-jan-06. Automation was provided by ant 1.6.5.


	Silenus
	Table of Contents
	Chapter I. Introduction
	Short Overview
	Dissertation Outline

	Chapter II. Background and Literature Review
	Existing network file storage solutions
	Non replicated remote file systems
	Network File System (NFS)
	Common Internet File System (CIFS)

	Replicated file systems
	Andrew File System (AFS)
	Coda

	Data grid solutions
	Globus file store
	Avaki

	File system core features

	Architectural qualities for distributed systems
	Transparencies
	Confidentiality
	Symmetric encryption
	Asymmetric encryption
	Encrypting decryption keys
	Existing cryptographic libraries

	Global availability
	WebDAV
	Web-based access to file storage

	Disconnected Operation
	Manageability
	Scalability
	Reliability
	Modifiability
	Platform independence

	Service Orientation
	Eight fallacies of distributed computing.
	Service Oriented Architecture
	Jini Network Technology
	Peer-to-peer networking
	SORCER
	Eight truth of networked computing


	Chapter III. Requirement Analysis
	Scenarios
	Small work group
	High Performance Computing Lab
	Large network
	Home user
	Concurrent Engineers
	Student Computer Lab
	Astronomy
	High energy physics

	Machine types on the network
	Server
	Always up client
	Work time up client
	Laptop
	Mobile client

	Usage roles
	File system users
	Administrators
	Optimizer services
	Service provisioners
	Intergrid service providers


	Chapter IV. Design
	System architecture
	Service user interface
	WebDAV adapter
	File store
	Metadata store
	Byte store
	Optimizer

	Chapter V. Validation
	Chapter VI. Conclusion
	Bibliography

